Effect of 'binary mitochondrial heteroplasmy' on respiration and ATP synthesis: implications for mitochondrial diseases.

نویسندگان

  • B Korzeniewski
  • M Malgat
  • T Letellier
  • J P Mazat
چکیده

Respiratory-chain-complex subunits in mitochondria are encoded by nuclear or mitochondrial DNA. This property might have profound implications for the phenotypic expression of mutations affecting oxidative phosphorylation complexes. The aim of this paper is to study the importance of the origin of the mutation (nuclear or mitochondrial) on the expression of mitochondrial defects. We have therefore developed theoretical models illustrating three mechanisms of nuclear or mitochondrial DNA mutation giving rise to a deficiency in the respiratory-chain complex: (1) a partial deficiency, homogeneously distributed in all of the mitochondria; (2) a complete deficiency, only affecting some of the mitochondria ('binary mitochondrial heteroplasmy'); and (3) a partial deficiency, affecting only some of the mitochondria. We show that mutations affecting oxidative phosphorylation complexes will be expressed in different ways depending on their origins. Although the expression of nuclear or mitochondrial mutations is evidence of a biochemical threshold, we demonstrate that the threshold value depends on the origin and distribution of the mutation (homogeneous or not) and also on the energy demand of the tissue. This last prediction has been confirmed in an experimental model using hexokinase for the simulation of the energy demand and a variation in mitochondrial concentration. We also emphasize the possible role of 'binary mitochondrial heteroplasmy' in the expression of mitochondrial DNA mutations and thus the importance of the origin of the deficit (mutation) for the diagnosis or therapy of mitochondrial diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of 6-deoxyclitoriacetal from Clitoria macrophylla Wall. on rat liver mitochondrial respiration and ATPase activity

A Thai plant Clitoria macrophylla Wall. was claimed to possess some pharmacological activities. The phytochemical studies reported a rotenoid compound, 6-deoxyclitoriacetal, which exhibits the cytotoxic effect in several cell line experiments. This report was to study the effect of 6-deoxyclitoriacetal on rat liver mitochondria, which may associated to its cytotoxic phenomena. Mitochondrial sus...

متن کامل

The effect of 6-deoxyclitoriacetal from Clitoria macrophylla Wall. on rat liver mitochondrial respiration and ATPase activity

A Thai plant Clitoria macrophylla Wall. was claimed to possess some pharmacological activities. The phytochemical studies reported a rotenoid compound, 6-deoxyclitoriacetal, which exhibits the cytotoxic effect in several cell line experiments. This report was to study the effect of 6-deoxyclitoriacetal on rat liver mitochondria, which may associated to its cytotoxic phenomena. Mitochondrial sus...

متن کامل

Mitochondrial DNA Mutations, Pathogenicity and Inheritance

Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...

متن کامل

Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...

متن کامل

های اسید گلوتامیک، تریپتوفان، آلانین tRNA بررسی مولکولی در Long QT وآسپارژین درژنوم میتوکندری بیماران مبتلا بهسندرم مقایسه با گروه کنترل

Background and purpose: Long QT syndrome is a heart arrhythmia identified by prolongation of the QT interval which is a cause of sudden cardiac death in young individuals. In most cases, abnormalities in heart repolarization are reasons of prolongation of action potential and arrhythmia. The activity of ion channels is sensitive to ATP level, therefore, mitochondrial disorders are considered...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 357 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2001